Utente:Lange/Voce4

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca

Per risoluzione angolare s'intende il potere risolutivo di uno strumento come un telescopio o un microscopio.

Il potere risolutivo o distanza minima risolvibile è la capacità delle componenti ottiche di uno strumento di misurare la separazione angolare dei punti nell'oggetto che si sta guardando.

Il termine risoluzione si riferisce alla distanza minima tra due punti distinguibili di un'immagine, sebbere il termine venga di frequente usato per indicare il potere risolutivo di un telescopio o di un microscopio. Il termine risoluzione viene anche utilizzato per descrivere la precisione con cui uno strumento misura o registra il valore della varibile in studio.

Il potere risolutivo di una lente è limitato dalla diffrazione. L'apertura della lente è un "buco" analogo alla fessura nell'esperimento a fessura singola per la diffrazione; la luce passando attraverso la fessura interfersice con essa, creando una figura di diffrazione a forma di anello, nota come cerchio di Airy, se la fase della luce incidente è considerata costante all'apertura. Il risultato finale è una sorta di sfuocamento dell'immagine. Un limite di diffrazione empirico è data dal criterio di Rayleigh per cui:

    

dove

è la risoluzione angolare,
è la lunghezza d'onda della luce,
e è il diamentro della lente.

The factor 1.22 is derived from a calculation of the position of the first dark ring surrounding the central Airy disc of the diffraction pattern. The calculation involves a Bessel function and 1.22 is approximately the first positive zero of the Bessel function of the first kind, of order one divided by pi. This factor is used to approximate the ability of the human eye to distinguish two separate point sources depending on the overlap of their Airy discs. Modern telescopes and microscopes with video sensors may be slightly better than the human eye in their ability to discern overlap of Airy discs. Thus it is worth bearing in mind that the Rayleigh criterion is an empirical estimate of resolution based on the assumption of a human observer, and may slightly underestimate the resolving power of a particular optical train. For specialized imaging, foreknowledge of some characteristics of the image can also improve on technical resolution limits through computerized image processing.

For an ideal lens of focal length f, the Rayleigh criterion yields a minimum spatial resolution, Δl:

.

This is the size of smallest object that the lens can resolve, and also the radius of the smallest spot that a collimated beam of light can be focused to. The size is proportional to wavelength, λ, and thus, for example, blue light can be focused to a smaller spot than red light. If the lens is focusing a beam of light with a finite extent (e.g., a laser beam), the value of D corresponds to the diameter of the light beam, not the lens. Since the spatial resolution is inversely proportional to D, this leads to the slightly surprising result that a wide beam of light may be focused to a smaller spot than a narrow one.

Single telescope case

[modifica | modifica wikitesto]

Point-like sources separated by an angle smaller than the angular resolution cannot be resolved. A single optical telescope may have an angular resolution less than one arcsecond, but astronomical seeing and other atmospheric effects make attaining this very hard.

The angular resolution R of a telescope can usually be approximated by

where

λ is the wavelength of the observed radiation
and D is the diameter of the telescope.

The resulting R is in radians. Sources larger than the angular resolution are called extended sources or diffuse sources, and smaller sources are called point sources.

For example, in the case of yellow light with a wavelength of 580 nm, for a resolution of 1 arc second, we need D = 12 cm.

Telescope array case

[modifica | modifica wikitesto]

The highest angular resolutions can be achieved by arrays of telescopes called astronomical interferometers: these instruments can achieve angular resolutions of 0.001 arcsecond at optical wavelengths, and much higher resolutions at radio wavelengths. In order to perform aperture synthesis imaging, a large number of telescopes are required laid out in a 2 dimensional arrangement.

The angular resolution R of an interferometer array can usually be approximated by

where

λ is the wavelength of the observed radiation
and B is the length of the maximum physical separation of the telescopes in the array, called the baseline.

The resulting R is in radians. Sources larger than the angular resolution are called extended sources or diffuse sources, and smaller sources are called point sources.

For example, in order to form an image in yellow light with a wavelength of 580 nm, for a resolution of 1 milli-arcsecond, we need telescopes laid out in an array which is 120 m 120 m.

Microscope case

[modifica | modifica wikitesto]

The resolution R depends on the angular aperture α:

.

Here α is the collecting angle of the lens, which depends on the width of objective lens and its focal distance from the specimen. n is the refractive index of the medium in which the lens operates. λ is the wavelength of light illuminating or emanating from (in the case of fluorescence microscopy) the sample. The quantity nsinα is also known as the numerical aperture.

Due to the limitations of the values α, λ, and n, the resolution limit of a light microscope using visible light is about 200 nm. This is because: α for the best lens is about 70° (sinα = 0.94), the shortest wavelength of visible light is blue (λ = 450nm), and the typical high resolution lenses are oil immersion lenses (n = 1.56):