File proveniente da Wikimedia Commons. Clicca per visitare la pagina originale

File:Transmission line animation.gif

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca

Transmission_line_animation.gif(300 × 100 pixel, dimensione del file: 112 KB, tipo MIME: image/gif, ciclico, 30 frame, 1,8 s)

Logo di Commons
Logo di Commons
Questo file e la sua pagina di descrizione (discussione · modifica) si trovano su Wikimedia Commons (?)

Dettagli

Descrizione
English: A lossless transmission line, terminated at an impedance-matched load resistor (box on right). Red color indicates high voltage, and blue indicates low voltage. Black dots represent electrons. (See also File:Transmission_line_animation3.gif for a newer and simpler version.)
Data
Fonte Opera propria
Autore Sbyrnes321

Licenza

Io, detentore del copyright su quest'opera, dichiaro di pubblicarla con la seguente licenza:
Creative Commons CC-Zero Questo file è reso disponibile nei termini della licenza Creative Commons CC0 1.0 Universal.
La persona che ha associato un'opera con questo atto legale ha donato tale opera nel pubblico dominio rinunciando a tutti i diritti sull'opera in tutto il mondo, inclusi tutti i diritti connessi o altri diritti simili, per quanto permesso dalla legge. Puoi copiare, modificare, distribuire ed utilizzare l'opera, anche a fini commerciali, senza chiedere alcun permesso.

Source code

"""
(C) Steven Byrnes, 2013. This code is released under the MIT license
http://opensource.org/licenses/MIT

This code runs in Python 2.7 or 3.3. It requires imagemagick to be installed;
that's how it assembles images into animated GIFs.
"""

from __future__ import division 

import pygame as pg
from numpy import cos, pi, sin, asarray

import subprocess, os
directory_now = os.path.dirname(os.path.realpath(__file__))

frames_in_anim = 30
animation_loop_seconds = 2 #time in seconds for animation to loop one cycle

bgcolor = (255,255,255) #white
linecolor = (0,0,0) #outline of resistor is black
ecolor = (0,0,0) #electron color is black

img_height = 100
img_width = 300

#transmission line wire length and thickness, and y-coordinate of each wire
tl_length = img_width * 6//7
tl_thickness = 5
tl_top_y = img_height*4//9
tl_bot_y = img_height*5//9 - tl_thickness//2 #second term is to keep it symmetric

wavelength = 0.6 * tl_length

resistor_length = img_height//2
resistor_width = resistor_length//3

resistor_center = (img_width - resistor_width*3//2, img_height//2)

top_lead_path = [(tl_length, tl_top_y + tl_thickness-1),
                 (tl_length, img_height//9),
                 (resistor_center[0], img_height//9),
                 resistor_center]

bot_lead_path = [(x,img_height-y+1) for (x,y) in top_lead_path]

lead_thickness = 2

def rgb_from_V(V):
    """
    voltage V varies -1 to +1. Return a color as a function of V.
    Color is a 3-tuple red,green,blue, each 0 to 255.
    """
    return (100+100*V, 100 - 100*V, 100-100*V)

def tup_round(tup):
    """
    round each element of a tuple to nearest integer
    """
    return tuple(int(round(x)) for x in tup)

def make_wire_surf(phase_at_left):
    """
    make a pygame surface representing a colored wire. startphase is phase
    at left side of the wire.
    """
    imgarray = [[rgb_from_V(cos(phase_at_left + 2*pi*x/wavelength))
                 for y in range(tl_thickness)] for x in range(tl_length)]
    return pg.surfarray.make_surface(asarray(imgarray))

def make_resistor_surf(phase_at_top):
    """
    make a pygame surface representing the resistor. topphase is phase at top
    """
    imgarray = [[rgb_from_V(cos(phase_at_top) * (1 - 2*y/resistor_length))
                     for y in range(resistor_length)]
                    for x in range(resistor_width)]
    surf = pg.surfarray.make_surface(asarray(imgarray))
    pg.draw.rect(surf,linecolor,surf.get_rect(),1) #1-pixel black outline
    return surf

def e_path(param, phase_top_left):
    """
    as param goes 0 to 1, this returns {'pos': (x, y), 'phase':phi},
    where (x,y) is the coordinates of the corresponding point on the electron
    dot path, and phi is the phase for an electron at that point on the path.
    phase_top_left is phase of the left side of the top wire.
    """
    d = 3 #pixels between electron path and corresponding wires
    path_length = ( 2*(tl_length - d) #transmission lines
                  + 2*(img_height//3) #left vertical leads
                  + 2*(resistor_center[0] - tl_length + 2*d + lead_thickness)
                  + 2*(resistor_length//2 - img_height//9) #right vertical leads
                  + resistor_length) #through resistor
    howfar = param * path_length
    
    #move right across top transmission line
    if howfar < tl_length - d:
        x = howfar
        y = tl_top_y - d
        phase = phase_top_left + 2 * pi * x / wavelength
        return {'pos':(x,y), 'phase':phase}
    howfar -= (tl_length - d)
    
    #move up lead
    if howfar < img_height//3:
        x = tl_length - d
        y = tl_top_y - d - howfar
        phase = phase_top_left + 2 * pi * tl_length / wavelength
        return {'pos':(x,y), 'phase':phase}
    howfar -= img_height//3
    
    #move right to above resistor
    if howfar < (resistor_center[0]- tl_length) + 2*d + lead_thickness:
        x = tl_length - d + howfar
        y = img_height//9 - d
        phase = phase_top_left + 2 * pi * tl_length / wavelength
        return {'pos':(x,y), 'phase':phase}
    howfar -= (resistor_center[0] - tl_length) + 2*d + lead_thickness
    
    #move down to top of resistor
    if howfar < (resistor_length//2 - img_height//9):
        x = resistor_center[0] + d + lead_thickness
        y = img_height//9 - d + howfar
        phase = phase_top_left + 2 * pi * tl_length / wavelength
        return {'pos':(x,y), 'phase':phase}
    howfar -= (resistor_length//2 - img_height//9)
    
    #move down resistor
    if howfar < resistor_length:
        x = resistor_center[0] + resistor_width//2 + d
        y = resistor_center[1] - resistor_length//2 + howfar
        phase = phase_top_left + 2 * pi * tl_length / wavelength
        return {'pos':(x,y), 'phase':phase}
    howfar -= resistor_length
    
    #beyond here use the mirror symmetry
    flipdata = e_path(1-param, phase_top_left)
    flipdata['pos'] = (flipdata['pos'][0], img_height - flipdata['pos'][1] + 2)
    return flipdata

def main():
    #Make and save a drawing for each frame
    filename_list = [os.path.join(directory_now, 'temp' + str(n) + '.png')
                         for n in range(frames_in_anim)]

    for frame in range(frames_in_anim):
        phase_top_left = -2 * pi * frame / frames_in_anim
        phase_top_right = phase_top_left + 2 * pi * tl_length / wavelength
        
        #initialize surface
        surf = pg.Surface((img_width,img_height))
        surf.fill(bgcolor);
        
        #draw transmission line
        top_wire_surf = make_wire_surf(phase_top_left)
        bottom_wire_surf = make_wire_surf(phase_top_left + pi)
        surf.blit(top_wire_surf, (0, tl_top_y))
        surf.blit(bottom_wire_surf, (0, tl_bot_y))
        
        #draw lead wires
        color = rgb_from_V(cos(phase_top_right))
        pg.draw.lines(surf,color,False,top_lead_path,lead_thickness)
        color = rgb_from_V(cos(phase_top_right + pi))
        pg.draw.lines(surf,color,False,bot_lead_path,lead_thickness)
        
        #draw resistor
        resistor_surf = make_resistor_surf(phase_top_right)
        surf.blit(resistor_surf, (resistor_center[0] - resistor_width//2,
                                  resistor_center[1] - resistor_length//2))
        
        #draw electrons
        num_electrons = 100
        equilibrium_params = [x/(num_electrons-1) for x in range(num_electrons)]
        phases = [e_path(a, phase_top_left)['phase'] for a in equilibrium_params]
        now_params = [equilibrium_params[i] + sin(phases[i])/(1.3*num_electrons)
                           for i in range(num_electrons)]
        coords = [e_path(a, phase_top_left)['pos'] for a in now_params]
        for coord in coords:
            pg.draw.circle(surf, ecolor, tup_round(coord), 2, 0)
        
        pg.image.save(surf, filename_list[frame])
        
    seconds_per_frame = animation_loop_seconds / frames_in_anim
    frame_delay = str(int(seconds_per_frame * 100))
    command_list = ['convert', '-delay', frame_delay, '-loop', '0'] + filename_list + ['anim.gif']
    # Use the "convert" command (part of ImageMagick) to build the animation
    subprocess.call(command_list, cwd=directory_now)
    # Earlier, we saved an image file for each frame of the animation. Now
    # that the animation is assembled, we can (optionally) delete those files
    if True:
        for filename in filename_list:
            os.remove(filename)

main()

Didascalie

Aggiungi una brevissima spiegazione di ciò che questo file rappresenta
A lossless transmission line, terminated at an impedance-matched load resistor (box on right). Red color indicates high voltage, and blue indicates low voltage. Black dots represent electrons.

Elementi ritratti in questo file

raffigura

Cronologia del file

Fare clic su un gruppo data/ora per vedere il file come si presentava nel momento indicato.

Data/OraMiniaturaDimensioniUtenteCommento
attuale16:50, 24 feb 2014Miniatura della versione delle 16:50, 24 feb 2014300 × 100 (112 KB)Sbyrnes321smaller file size, by switching from images2gif.py to imagemagick
15:40, 30 lug 2012Miniatura della versione delle 15:40, 30 lug 2012300 × 100 (258 KB)Sbyrnes321

La seguente pagina usa questo file:

Utilizzo globale del file

Anche i seguenti wiki usano questo file: